GIET (POLYTECHNIC), JAGATPUR,CUTTACK.

LESSON PLAN

Discipline: Electrical Engg. \& ETC Engg.	Semester: 3rd	Name of the Teaching Faculty: Prachi Swain (Lect. In Mathematics)
Subject: Engg. Math-III	No of Days/per week class allotted: 4P	Semester From Date: to Date: No. of Weeks: 15
Week	Class Day	Theory Topics
1ST	$1^{\text {st }}$	1. COMPLEX NUMBER Arrival of complex number. Introduction of i (iota) and its properties. Representation of complex number. Conjugate of a complex number and its properties.
	$2^{\text {nd }}$	Modulus, Amplitude of a complex number and its properties. Representation of a Complex Number.
	$3^{\text {rd }}$	Cube roots of Unity and its properties
	$4^{\text {th }}$	Square roots of a complex Number
2ND	$1{ }^{\text {st }}$	De Moivre's Theorem and its application
	$2^{\text {nd }}$	Solve problems on TBE(Text Book Exercise)

	$3^{\text {rd }}$	2. MATRICES Define rank of a matrix with examples.
	$4^{\text {th }}$	Perform elementary row transformations to determine the rank of a matrix.
3RD	$1^{\text {st }}$	State Rouche's theorem for consistency of a system of linear equations in unknowns.
	$2^{\text {nd }}$	Solve equations in three unknowns testing consistency.
	$3^{\text {rd }}$	3. LINEAR DIFFERENTIAL EQUATIONS Define Homogeneous \& Non-Homogeneous linear Differential Equations with constant coefficients with example. General Solution of LDE in terms of C.F and P.I. Rules for Finding the Complementary Function (y_{c}). Case-I(Roots of A.E. are real and distinct)
	$4^{\text {th }}$	Case-II(Roots of A.E. are real and repeated) Case-III (Roots of A.E. are imaginary) Case-IV (Combined case of all the above 3 cases)
4TH	$1^{\text {st }}$	Rules For finding Particular integral (y_{p}) or Complete Solution ($y_{c}+y_{p}$). $F(D) y=f(x) \Rightarrow y_{p}=\frac{f(x)}{F(D)}$ Case-I ($f(x)=x^{n}$ form) Case-II $\left(f(x)=e^{a x}\right.$, such that $F(a) \neq 0$.) Case-III $\left(f(x)=e^{a x}\right.$, such that $\left.F(a)=0\right)$
	$2^{\text {nd }}$	Case-IV $\left(f(x)=\sin (a x+b)\right.$ or $\cos (a x+b)$ such that $\left.F\left(-a^{2}\right) \neq 0\right)$ Case-V $\left(f(x)=\sin (a x+b)\right.$ or $\cos (a x+b)$ such that $\left.F\left(-a^{2}\right)=0\right)$
	$3^{\text {rd }}$	$\begin{aligned} & \text { Case-VI }\left(f(x)=e^{a x} V, V \text { is function of } \mathrm{x}\right) \\ & \text { Case-VII }(f(x)=x V) \end{aligned}$

	$4^{\text {th }}$	Solve problems on TBE(Text Book Exercise)
5TH	$1^{\text {st }}$	Partial Differential Equation (PDE): Order and degree of PDE. Formation of a PDE
	$2^{\text {nd }}$	Formation of PDE
	$3^{\text {rd }}$	Solve Linear Equation of first order: $P p+Q q=R$
	$4^{\text {th }}$	Solve problems on TBE(Text Book Exercise)
6TH	$1^{\text {st }}$	4. LAPLACE TRANSFORMS Definition: Gamma Function, Properties of Gamma Function with examples
	$2^{\text {nd }}$	Definition of Laplace Transform of $f(t)$. Linear Property. Evaluation of Laplace Transformation of some standard/Elementary Functions ($f(t)=k$ or t^{n} or $e^{a t}$ or $e^{-a t}$ or sinh at or cosh at or sin at or cosat)
	$3^{\text {rd }}$	Simple Use Laplace transform of Standard formula.
	$4^{\text {th }}$	Shifting Theorems/ Property Change of Scale Property
7TH	$1^{\text {st }}$	Application of Using Shifting Property
	$2^{\text {nd }}$	Transform of $e^{a t} f(t), t^{n} f(t),{ }_{t}^{1} f(t)$ with Example
	$3^{\text {rd }}$	Formulate Laplace transform of Derivatives, integrals, multiplication by t^{n} and division by t with example
	$4^{\text {th }}$	-DO-
8TH	$1^{\text {st }}$	Define: Inverse Laplace Transform (ILT). Formula for standard function
	$2^{\text {nd }}$	ILT by method of partial fraction
	$3^{\text {rd }}$	-Do-
	$4^{\text {th }}$	Solve problems on TBE(Text Book Exercise)

9TH	$1^{\text {st }}$	5. FOURIER SERIES Define Periodic Functions with graphs. Even/Odd Functions. Dirichlet Function
	$2^{\text {nd }}$	Define Fourier Series and its notations. Euler formula for Fourier Series
	$3^{\text {rd }}$	Workout Examples
	$4^{\text {th }}$	Dirichlet Condition for the expansion of Fourier series and its convergent
10TH	$1^{\text {st }}$	Problem Solving on previous class
	$2^{\text {nd }}$	Problem Solving on previous class
	$3^{\text {rd }}$	Problem Solving on previous class
	$4^{\text {th }}$	Fourier Series of Even/Odd functions in ($0 \leq x \leq 2 \pi$ and $-\pi \leq x \leq \pi$)
11TH	$1^{\text {st }}$	Problem Practice of previous class
	$2^{\text {nd }}$	Fourier Series of Continuous functions and functions having point of discontinuous in $(0 \leq x \leq 2 \pi$ and $-\pi \leq x \leq \pi)$
	$3^{\text {rd }}$	Problem Practice of previous class
	$4^{\text {th }}$	Solve problems on TBE(Text Book Exercise) and previous year questions
12TH	$1^{\text {st }}$	6. NUMERICAL METHODS Limitation of analytical methods of solution of Algebraic Equation.
	$2^{\text {nd }}$	Derive iterative formula for finding the solutions of Algebraic Equation by I- Bisection Method
	$3^{\text {rd }}$	II- Newton-Raphson Method
	$4^{\text {th }}$	Solve problems on TBE(Text Book Exercise)
13TH	$1^{\text {st }}$	7. FINITE DIFFERENCE \& INTERPOLATION Formation of Forward (Δ) and Backward (∇) Difference table.

	$2^{\text {nd }}$	Define: Shift operator (E). Relation among the operators
	$3^{\text {rd }}$	Newton's forward and backward interpolation for equal interval
	$4^{\text {th }}$	Problem Solving on previous class
	$1^{\text {st }}$	Problem Solving on previous class
	$2^{\text {nd }}$	Lagrange Interpolation formula for unequal intervals
	$3^{\text {rd }}$	Problem Solving on previous class
	$4^{\text {th }}$	Explain Numerical Integration. 1. Newton's Cote's formula
	$1^{\text {st }}$	Problem Solving on previous class
	$2^{\text {nd }}$	2. Trapezoidal Rule. Solving problems
	$3^{\text {rd }}$	3. Simpson's 1/3 rd rule. Solving Problems.
	$4^{\text {th }}$	Problem Solving on previous class

